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Abstract

This paper develops an estimator for regression discontinuity designs
(RDD) with multiple thresholds. We construct an integrated—derivative
estimator that recovers the outcome difference by numerically integrating
nonparametric slope estimates between thresholds. We derive its asymp-
totic distribution, establishing a central limit theorem with a feasible vari-
ance formula. The integrated estimator is asymptotically independent of
the standard boundary estimator, which enables an inverse—variance com-
bination that is more efficient. Simulations confirm the theoretical predic-
tions: efficiency gains are modest under uniform designs and more pro-

nounced when data are sparse near the cutoffs.
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1 Introduction

In many empirical settings, researchers face running variables that cross mul-
tiple known thresholds, each inducing a discrete change in treatment. Regres-
sion Discontinuity Designs (RDD) are often extended to such contexts either
by recentering and pooling discontinuities or by estimating the local disconti-
nuity at each threshold separately and then aggregating the results to infer an
average effect (Cattaneo et al., 2016} |Bertanha), [2020). This approach captures
the immediate impact of crossing a threshold but typically ignores how the
outcome evolves between thresholds.

This paper proposes a complementary strategy. We study settings with a
continuous running variable z € R and an outcome E[y | z] = g(z), where g(-)
is smooth between a finite number of known discontinuities {t1,fy,..., fx}.
Rather than focusing solely on the jumps at each threshold, we exploit infor-
mation from the interior of each segment. Specifically, we construct an estima-
tor by numerically integrating a nonparametrically estimated derivative g’(z)
between thresholds, thereby capturing the accumulated change in the outcome
across the interval. Whereas standard RDD estimators rely on outcome differ-
ences near the cutoffs, our approach draws on observations throughout the
interior. The two estimators therefore use largely distinct subsets of the data,
and we show they are asymptotically independent.

This property enables a natural efficiency gain. Since both estimators tar-
get the same parameter but with independent information, we combine them
using inverse-variance weights. The resulting estimator is more efficient than
either component alone, particularly when ¢(z) carries information between
thresholds or when data are sparse at the boundaries.

Our contributions are threefold. First, we introduce the integrated—derivative
estimator, which leverages variation between thresholds in multiple-cutoff RDD
designs. Second, we establish its asymptotic properties, including a CLT and
variance expression. Third, we show that combining it with the conventional

boundary estimator can improve efficiency in both theory and simulations.



The econometric foundations of regression discontinuity (RD) designs were
established by [Hahn et al.| (2001), who showed that treatment effects at a cut-
off can be identified as discontinuities in conditional expectations and derived
the asymptotic behavior of local polynomial estimators. Subsequent work re-
fined inference by addressing the boundary bias problem: (Calonico et al.{(2014)
proposed robust bias—corrected intervals, and (Calonico et al.| (2020) developed
bandwidth selectors optimized for coverage accuracy. Recent advances fur-
ther broaden the scope of RD. Imbens and Wager| (2019) derive minimax lin-
ear estimators that deliver uniformly valid confidence intervals and naturally
extend to multivariate settings, while Calonico et al.| (2025) provide a frame-
work for analyzing treatment effect heterogeneity. Parallel to these develop-
ments, a smaller strand considers designs with multiple thresholds. |Catta-
neo et al[(2016) interpret pooled multi-cutoff estimators as weighted averages
of local effects, and [Bertanha| (2020) proposes estimators that optimally com-
bine information across cutoffs to target policy-relevant parameters. These ap-
proaches, however, remain boundary-based, relying primarily on observations
near each cutoff. Our contribution is to complement this literature with an
integrated—derivative estimator that, under minimal continuity assumptions
and without imposing structural structure, exploits interior variation between
thresholds. The estimator delivers a feasible central limit theorem with an ex-
plicit variance formula and is asymptotically independent of standard bound-
ary estimators, enabling efficiency gains through inverse-variance combina-
tion.

The structure of the paper is as follows. Section [2|introduces the problem
setup and reviews the standard multiple-threshold RD framework. Section
develops our integrated—derivative estimator in a simple single-segment set-
ting and compares it with boundary-based estimation. Section {4] extends the
approach to a general case. Section 5] presents simulation evidence. Section [f]

concludes with a discussion of implications and potential extensions.
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Figure 1: Illustration of Multiple Cutoffs in Regression Discontinuity Design

2 Problem Setup; Regression Discontinuity Design

with Multiple Thresholds

Empirical research often employs Regression Discontinuity Designs (RDD) in
settings where decisions hinge on multiple cutoffs. For example, children’s
school-entry dates are determined by birthdate cutoffs: being born just before
or after a specific date decides whether a child starts school in one academic
year or the next. This cutoff is applied repeatedly across multiple cohorts, cre-
ating a series of thresholds. Similarly, neonatal care policies can change de-
pending on whether a baby is born just before or after midnight, influencing
the care duration provided at every midnight boundary (see, for example, Al-
mond and Doyle, 2011; Fredriksson and Ockert, 2014; [Persson et al.,[2021).
These scenarios involve multiple thresholds, t1, ..., g, along the range of
the running variable, z;, each potentially inducing a discontinuity in the con-
ditional expectation of the outcome, y;. The conditional expectation is denoted
as ¢(z;) = Ely; | zi], which captures the relationship between the running
variable and the expected outcome. For instance, these outcomes might repre-
sent students” expected grades affected by school-entry timing or the average
health of newborns impacted by changes in neonatal care protocols. Figure

shows an illustration of such discontinuities.



To formalize, consider N independent observations (z;, y;), where z; € [a, b].
The function g(-), representing the conditional expectation of y; given z;, is
smooth (infinitely differentiable or at least CP*! for some p) except at the K

known thresholds t1, ..., tx, where:

g(ty) #gth), k=1,... K

Each threshold t; induces a local jump in g(-), defined as:
T = 8(8) — g(t)-

Researchers often summarize these local jumps by estimating a weighted

average of the discontinuities:

K K
T=) wt, with Y we=1
k=1 k=1

The weights wy, reflect the relative importance assigned to each threshold. If

no specific threshold is prioritized, equal weights wy = 1/K may be used. Al-
ternatively, weights can be proportional to the density of observations at each
threshold. This weighting is automatically handled in standard RDD setups
by recentering and pooling all thresholds (Cattaneo et al., 2016).

Rewriting 7, we have:

K
T = wrg(ty) —wig(ty ) — Y [wrg(tp ) — w18 (t_1)],



or equivalentlyﬂ
K
T = wig(tg) —wig(ty) = ) G, (1)
k=2

where:

6 = wig(ty ) — w18 (b ).

3 The Estimator for a Single Segment

First, we consider a simplified scenario by estimating the parameter

1
(5:m(1)—m(0):/0 ' (u)du @)

on a single interval normalized to [0,1]. Later, we will extend this discus-
sion to the general setting. We have independent observations {(X;, Y;)}¥,

satisfying the mode]ﬂ
Yi=m(X;) +e, Eleg|X)]=0, Var(e|X;)=0%(X).

Using the integral form of Equation |2, we focus on estimating the deriva-
tives of m(.) nonparametrically by partitioning the interval [0, 1] into B subin-
tervals ("bins") of the same length 2k with h = ﬁ, each centered at points c,. At
each center c;, we construct a local polynomial estimator of the first derivative

m’(c,) using observations (X;,Y;) that lie within the bin I, = [c;, — h, ¢}, + h].

2As K — o0, assuming the weights wy vanish appropriately (e.g., limg_,co wy = 0), the parame-
ter T converges to:
0
li =—) 6.

Intuitively, as the number of thresholds increases, T represents the aggregated sum of changes
in the expected outcome between consecutive thresholds. In this way, multiple-threshold RDD
scenarios simplify to a series of individual differences across segments, which are weighted and
combined to produce the overall parameter of interest.

30n the segment [t;_1, ], let Ay := t — t;_1 > 0 and normalize x = (z — t_1) /Ay € [0,1]. We
then define
m(x) = g(ti1 +xA),
so that m(0) = g(t |), m(1) = g(t; ), and m'(x) = A &'(te—1 + x Ag).



Specifically, we estimate m’ (¢, ) by solving the weighted least squares problem:

2
B(cy) = argmin ) <Y Zﬁ] i—Cp ]> Ky(Xi —cp),

Xiel,

with kernel Ky, (1) = K(u/h)/h controlled by bandwidth h. The estimator of

interest is the first derivative:

Bi(cy) = e3 B(cy) szszr 3)

where w; , = w’ (#), and w' (u) is given by:

K(u)
i

wT( )_625 [l,uh,...,(uh)p]T

with K(u) being a kernel function and Sy a matrix defined as a matrix with its
(i,j)th element being Sy ;1 ; with:

N

Sn,j = 3 Kn(Xi — cp) (X; — cp).
=

Integrating these derivative estimates over the interval yields the final esti-

mator:
) B N
,Bavg =2h Z ,Bl(cb) = Z wN,iYi/
b=1 i=1
where wy ; is the total weight assigned to observation i.

We impose the following assumptions for our theoretical analysis:

Assumption 1 (Smoothness of m). m € C™@{P+1.5}(]0,1]) for some integer

p>1

Assumption 2 (Design Density). Each X; takes values in [0,1] with a density
f that is continuous, strictly positive on [0,1] (no atoms), and has a bounded

second derivative.

Assumption 3 (Bounded Conditional Variance). ¢?(x) = Var(e; | X; = x) is



continuous and bounded on [0, 1].

Assumption 4 (Kernel Conditions). The kernel K is symmetric, bounded, sup-

ported on [—1, 1], and satisfies

1 1
/ K(u)du = 1, / lulP™ K (u)|du < oo.
-1 -1

Define the equivalent kernel for the derivative estimator by
K*(u) =elS7Y(1,u,...,u")TK(u),
where Sisa (p + 1) X (p + 1) matrix with entries

Sij = Mitj—2 and pj= /qu(u)du.

It follows that K* is also supported and bounded on [—1, 1].

Assumption 5 (Bandwidth). Let h = h(N) — 0 as N — oo and assume

Nh

S oo, NKh?2 — oo, VNI = 0.
log N

Assumption 6 (Higher-Order Moment of ;). There exists § > 0 and a constant
C < oo such that

E[le;|*™ | X;=x] < C forallx € [0,1],

uniformly in 7.

Theorem 1 (Asymptotic Distribution of the Integrated Derivative Estimator).

Let {(X;,Y;)}N, be independent observations from the model
Y; = m(X;)+e, Ele| Xi] =0, Var(e | X)) = X(Xy),

where X; € [0,1] has density f. Suppose Assumptions hold with polynomial
degree p > 2, so that m(.) is (p + 1)-times continuously differentiable on [0, 1], and



we use a degree-p local polynomial estimator to estimate m'(+). Define

Partition [0,1] into B subintervals each of length 2h = 1/ B, with midpoints ¢, =
(2b —1)hforb = 1,...,B. For each midpoint cy, let B1(cy) be the local polynomial
estimator of the derivative: m'(cy). Then deﬁnﬁ

B
,Ban = 2h hZ,Bl(Cb)-
=1

Then, under Assumptions[IH6| and conditional on the design X = {Xy,..., Xn}:

VNI (s = 7 = Bias) & N0, 2 [ [Kw)du || ?(5)) ).
where

o If p > 2, then the local-polynomial bias is o(h?), and the dominant bias term
comes from the midpoint rule (Lemma|3):
. o hz " "
Bias = — [m 1) — m (o)]

o If p = 2, both the midpoint rule and the local-polynomial estimator contribute

to the bias at order h2. From Lemma[3|land Lemmald] one obtains

Bias = h62</1 uSK*(u)du—1> [m" (1) —m" (0)].

4The midpoint aggregation induces an O(h?) quadrature error for fol m' (1) du. If a composite
quadrature of global order g > 2 is used instead, the quadrature error becomes O(h7). Since the
aggregate local-polynomial bias is O(h?), the deterministic remainder is O(hmi“{”"?}). Under the

normalization v N2, it suffices that
\/ﬁh 1+min{p,q} —5 0.

Thus, while the theorem is stated under midpoint aggregation (g7 = 2, requiring VNI — 0), the
bandwidth restriction is not pivotal: with composite Simpson (3 = 4) the requirement relaxes to
VNi* — 0 when p = 3, and to v/NK® — 0 when p > 4. Comparable relaxations obtain with
Richardson—extrapolated midpoint (effective § = 4) or higher-order Newton-Cotes/Gaussian
rules.



Proof. Write

lBavg_FZZhé(B](Ch)—ml(Cb)> + {Zhbim'(cb)—/ol m’(u)du}.

local-polynomial term midpoint (quadrature) term

Bias. By Lemma

20 3 (ren) = e0) = e (0K ) [ 0) =m0 )] o0),

By Lemmal[3|with g = n/,

B / 1 / o h? " "
zhb;m (cb)—/o () du = == [m"(1) = m"(0)] + O(k).

Hence:

o If p > 2, then h? = o(h?) and the leading bias is the midpoint term:

2
Bias = —% [m" (1) —m"(0)], (Bavg — T — Bias) = o(I?).

o If p = 2, the two h? contributions add:

2
Bias = % (/11 wPK* (u) du — 1> [m"(1)—m"(0)],  (Bavg—TI —Bias) = O(h*).

Stochastic term and variance. Let wy; ; be the effective weights from Lemma

so that
. . N
,Bavg - ]E[,Bavg | X] = 2 WN i &-
i=1

By Lemma

U%\] = Var( in,iSi ' X) = % (/_11 K*2(u)du) (/01 (;2((5)) du) —l—o(ﬁ).

i=1

10



Therefore with ay = vV Nh2,

oy — OF =2 (/11 K*z(u)du) </01

CLT. The Lyapunov condition for the triangular array {wy ;e;} holds by

o (u) >
du in probability.
fu) P Y

Lemma[2] so
%\] (ﬁavg — E[Bavg | X]) L N(0,1) conditionally on X.
Combine this with the bias decomposition and Slutsky’s lemma to obtain
VNI? (Bavg — T —Bias) £ N(0, 2 [ K2 [0?/f).

Finally, the residual deterministic term after subtracting Bias satisfies

O(h*) +o(h?), p=2,
Ry =
O(hP) + O(h*) +o(hP), p>2,
so
O(V/NK®) + o(v/NK3), p=2,
Vv th RN = = 0(1)
O(VNRPH) + O(vV/NK®) 4 o(vVNIPTY), p>2,
by Assumption 5l This completes the proof. O

The proof mirrors the estimator’s decomposition. Lemma[]yields a CLT for
the single linear form in the errors defined by the effective weights (no per-bin
CLTs are needed.) Lemma [5] translates the weight geometry into the prod-
uct—form variance 2 f K*2. f a2/ f, which is free of the unknown regression
function m. On the deterministic side, Lemma [4 shows that the aggregate lo-
cal-polynomial error reduces to a boundary term, while Lemma 3|converts the
midpoint quadrature error into a boundary expression. Together these yield

the leading h? bias used for centering in Theorem

11



3.1 Comparison with Level Estimation at the Boundaries

In this section, we compare the bias and variance of our proposed estimator to
an alternative approach that estimates ¢ in (2) by directly estimating m (1) and
m(0) using local polynomial regression at the boundaries and subtracting the
results. This boundary-based approach is analogous to the commonly used
regression discontinuity design (RDD) estimators, which rely on estimating
levels on either side of the threshold and calculating their difference.

From [Fan and Yao| (2005), the asymptotic behavior of the boundary-based

estimator is:

hp+1

VNI |blevels — 6 —
[ levels (P"’l)!

d - P(17) | [ ()
%N(O,/mch(quu ) B K (u)?du 70 ),

(m(P+1)(1) /C uPTIKE (u) du — m(p+l)(0+) /00 uP K (u) d”)]

—C

(4)

where Sjevels = 1t(1 — ch) — 1120 + ch) for a small positive constant ¢, and
K:(u) = el S (1,u,...,uP)TK(u). Here, S, is defined similarly to S, replacing
pjwith ;. = [ wK(u) du, while K;_ (1) and S;_ are defined analogously,
replacing y; with pj1_c = [ wK(u)du.

From equation (), compared to our proposed estimator in theorem () with
the same / and p, the asymptotic bias and variance of the boundary-based
estimator decrease at faster rates. Consequently, the boundary estimator Slevels
is asymptotically more efficient, achieving lower bias and variance.

However, when data near the boundaries is sparse or the outcome variance
is high in those regions, the integral-based estimator ﬁavg may be informative
in small samples. By leveraging data from the entire interval, it mitigates the
instability typically associated with boundary-based estimates. Additionally,
the theoretical variance constants differ between the two estimators, making
it nontrivial to determine a priori whether the integral-based estimator will
yield a higher or lower variance compared to the level-based estimator in small

samples.

12



However, the main advantage of our estimator is that it is asymptotically
independent from the standard estimator based on the level difference (Lemma
) The boundary estimator Slevels Uses data close to the boundaries (within in-
tervals of length /), while the integral-based estimator ﬁavg relies on data from
the entire unit interval. Consequently, the overlap in data usage between the
two estimators diminishes as & — 0. Importantly, this independence allows for
combining the two estimators using variance-weighted averages to construct
an estimator that is more efficient than either one individually. We demonstrate

this approach in Section 5]

Lemma 1 (Asymptotic independence via overlap bound). Let ﬁavg be the integrated-
derivative estimator with bandwidth h as in Theorem |1} and write

A c Y, 1
.Bavg ,Bavg | X Zwl&, max|wl| < Nh Zwi = ®p<W)'

i=1

Let the boundary levels at 0 and 1 be estimated by one-sided degree-p local polynomials
with asymmetric equivalent kernels and bandwidths hg = coh (at 0) and hy = c1h (at

1), where 0 < cmin < €0, €1 < Cmax < 00:

Slevels = Tf’l(li) - 71’>l(0+), 5levels - (Slevels | X Z 0 &,

with N
c . 1
max\vl| < N i:Zlvi = @F(m),

and v; # 0 only if X; € [0, Aoh] U [1 — A1h, 1], where Ay, A1 > 0 depend only on
the one-sided equivalent kernels and on cy, 1.
Under Assumptions[IHe| (in particular Nh — oo and h — 0 and Assumption2),

conditionally on X,

COV(ﬁanrglevels | X) _ Op( Aof(0+);]—hA1f(l—) )’

13



and
COI‘r(Ban, Slevels | X) = Op((Aof(O—l—) —+ Alf(l—)) hl/Z) _. .

In particular, together with the marginal CLT5 for Bavg (Theorem (1) and the standard
boundary local-polynomial CLT for Seyels, this implies that the jointly scaled vector
is asymptotically bivariate normal with a diagonal covariance, i.e. the estimators are

asymptotically independent.

Proof. Write the centered forms

Sﬁ = :Ban ﬁﬁvg | X Z Wi€j, Ss = Slevels 5levels | X Z Ui&j.

Then
Cov(Sg,Ss | X) = Zwvl X;).

By construction of the one-sided boundary fits, v; # 0 only when X; € O), :=
[0, Aph] U [1 — A1h,1]. Since f is bounded with finite one-sided limits and has

no atoms at {0,1},
P(X; € Op) = Aoh f(0+) + Arh f(1=) +o(h),
#{i: Xi € Op} = N(Aof (0+) + A1 f(1=)) i+ 0p(N) = Op(NI (Ao f (0+) + A1 f(1-))).

Using max; |w;| < C/(Nh), max; |v;] < C/(Nh), and boundedness of (),

c C

Aof(0+) + A1 f(1-

|Cov(Sg, S5 | X)| < sup o (u) Y Jwwi| < C-#{i: X; € Oy}
u

o, ~ i~ Ol N

For the variances, by the standard expansions,

Var(Sg | X) = G%(ﬁ)' Var(Ss | X) = @)p(%).

14

))_



Hence

Corr(Sg,Ss | X) = Cov(Sp,5s [ X) -
\/Var(Slg | X) Var(S; | X)
Op((Aof(0+) + A1 f(1-))/(Nh))
V/(1/(Nh2)) (1/(Nh))

= Op((Aof(0+) + A1 f(1-))h/2) 0.

This proves the stated covariance and correlation bounds.

Finally, the marginal CLTs for the linear forms Sg and Ss (Theorem (1} and
the boundary local-polynomial CLT, under the same moment and bandwidth
conditions) imply that the jointly normalized vector is asymptotically bivariate
normal. Since the off-diagonal term vanishes by the lemma, the limit covari-

ance is diagonal; thus the estimators are asymptotically independent. O

4 The Estimator for General Cases

This section discusses the estimation of the weighted average of expected out-

comes at thresholds for a single segment (z € [0, 1]) with arbitrary weights:
8w = wym(17) — wom(0™).

By the product rule (7tm)" = 7t/m + 7tm’ and integration by parts, we have the

representation

S = /01 mw(u)m' (u) du + /01 7! (u) m(u) du, (5)

for any function 77 : [0,1] = R with 7(17) = wy and 77(0") = wp.

Estimator. Let {I,}}_; be the disjoint bins of width 2/, with midpoints ¢, =
(2b — 1)h. For each cj, let B1(cy) be the degree-p local-polynomial estimator
of m'(cp) from Theorem [l Given a (possibly data-chosen) quadratic weight

15



function 7t(-) with 71(17) = wy and 71(0") = wy, define

A B . 1
by = 20y 7(cy) Br(cy) + /0 7 (1) 1 () s, 6)
b=1
where 71 is any estimator satisfying fol q(u) m(u)du = fo (u) du+0,(N~1/2)

for each fixed quadratic qE]

Theorem 2 (Weighted integrated derivative). Suppose the assumptions of Theo-
rem [I| hold (including the bandwidth condition) with local-polynomial degree p > 2.
Let 7t(-) be a quadratic polynomial with 71(17) = wq, ©(0") = woand f01 7' (u) M(u) du =

0. Then, conditional on X,
A i1 1 .2 2
VNI (8 — 8 — Biasz) & N0, 2 / K*2(u) du / Mdu),
-1 0

where the bias satisfies
Bias; =

with (rm') (u) = 7o' (w) m' (u) + 7w(u) m" (u).

Proof. Write

b —2/12 ) (Bil(cy) —m'(cp)) +

A
1

{2 m(epm'(e) - |

b

1
w(u)m' (u) du} + '/0 ' (u) (m(u) —m(u)) du.

C

B

Term A is handled by Lemma E]with the factor 77(c;,) inside the sum: when the

5If 7(-) is selected from the quadratic family by imposing the sample orthogonality
01 7o' (u) 111 (1) du = 0 together with the endpoint constraints, then the second term in () is zero by
construction, and &, = 21 Y, 71(cy,) B1(cp) in practice.

16



local-polynomial degree is > 2, A = o(h?); when it is 2, A contributes an h?
term with coefficient [ u3K*(u)du. Term B is the midpoint quadrature error
with g(u) = 7(u)m’ (u); Lemma 3| gives
K2
B= - [(om!) (1) = (7om' ) (0)] + O(h*).
Term C is a sample moment error of the form [ q(u) (1f1(u) — m(u)) du with

q = 7’ quadratic; by assumption C = O,(N~1/2), hence
VNR2C = VI20,(1) = 0p(1) ash — 0.

Collecting A and B yields the stated Bias, (the O(h*) and o(h?) remainders
are negligible under v’ N%2), and the variance and CLT follow by repeating the
argument of Lemma 5| with the extra factor 7(c;) and invoking Lemma ] This

proves the claim. O

Remark 1 (Data-chosen 7t is first-order negligible). If 7t(-) is selected from the
quadratic family by the constraints 77(17) = wy, 7(0") = wp and the sample
orthogonality fol 7' (u) 1i1(u) du = 0, then the second term of (6) is exactly zero
in implementation. Moreover, letting 77* denote the population solution with

[ 70! ()ym(u) du = 0, one has || & — 77*|| = Op(N~/2) and
VNI2 (éw(ﬁ) - Sw(n*)) = 0,(1).

Thus, to first order, the stochastic choice of 7t does not affect the limit law in

Theorem 2

The estimators for each interval difference in eq. [If use disjoint observa-
tions between thresholds. Under the fixed-design, with independent errors,
the segment-level estimators are independent. Each estimator is asymptoti-
cally normal, so any finite linear combination is also asymptotically normal
with variance being the weighted sum of the segment variances. We therefore

focus on a single interior segment in the next section.

17



5 Simulations and Empirical Demonstration

We compare three estimators of the boundary difference 6 = m(1) — m(0):
(i) Boundary local linear (LL), dyng = (1) — 1i1(0), using one-sided local lin-
ear fits at 0 and 1 with triangular kernel K(u) = max{O 1 — |ul}; (ii) an In-
tegrated—Derivative estimator that rewrites § = fo x)dx and estimates lo-
cal slopes m’(c;) at midpoints ¢, via local quadratlc regression, aggregated
by composite midpoint quadrature; and (iii) a Combined estimator, deomp =
wbnd5bnd + Wintdint, With inverse—variance weights computed once per setting
from asymptotic variance formulas.

We partition [0,1] into B equal bins (A = 1/B) and set hy = A/2 (x = 1).
For bin b, we run a local quadratic regression of Y on (1, X — ¢y, (X — c},)?) with
triangular weights on |X — ¢;| < ho, and take the slope B1(c;) as %\’(cb). The

integrated estimator is
B
Z B1(cp)-
We use the sample equivalent variance formulas:

B (72 P — ~0 2
0 = 2Ck Y. AL,  SEpn=1/02/(nh}), OF=2Ck ZA %,
b=1 fb fb

where Cx = [ K*(u)?du is the derivative equivalent-kernel constant for lo-
cal quadratic (computed numerically), fh is a local density estimate based on
counts in [c; — hg, ¢p + hp), and 35 is the local residual MSE from the derivative
fit. For the boundary LL estimator, the plug—in variance uses the one—sided
equivalent-kernel constant Cy = [ K} (u)?du with local residual MSEs and
boundary densities.

We fix a draw of Xj,..., Xy from either Uniform|0, 1] or a truncated nor-
mal A(0.5, 0.3%) clipped to [0,1] and generate V; = m(X;) + &; with g ~
N(0,0%(X;)), where ¢(x) = 1 (homoskedastic) or ¢%(x) = 1+ x (heteroskedas-
tic). We repeat nsim = 500 times by redrawing the sample, conditional on

X. Asymptotic variances are computed from the realized X to form fixed in-

18



verse-variance weights for the combined estimator. We report bias, standard

deviation, RMSE, and the empirical 95% coverage of the feasible Wald CI for

Oint-

We consider m(x) = 2x + x? (polynomial; § = 3) and m(x) = (1 —cos(7x))/2
(cosine; 6 = 1). The former makes composite midpoint quadrature exact; the
latter has zero endpoint slopes and substantial curvature, stressing boundary
bias and quadrature. In our baseline with B = 10 and hy = A/2, the bias
is small, so differences across DGPs mainly reflect design (f,c?) rather than
m(+). The simulation codes can be accessed Here.

The simulation results in Table|l|mirror the large-sample theory with accu-
racy. The integrated estimator delivers coverage rates tightly clustered around
0.94-0.95, precisely in line with the feasible CLT and the variance expression
Var(dint) = Q2/(NK3). The boundary estimator, as expected, follows a faster
convergence rate, the familiar (Nhg) ! rate.

More importantly, the simulations demonstrate the payoff from combin-
ing the two approaches. The inverse—variance weighted estimator consistently
lowers RMSE relative to the boundary method alone. Under uniform designs
the improvements are modest, on the order of two to four percent, but in more
irregular designs, such as the truncated normal case, the gains become substan-
tial, reaching seven to nine percent. This is precisely the scenario highlighted
by the theory: because the two estimators rely on distinct information sets,
boundary levels versus interior slopes, their variances can be efficiently pooled,
and with negligible covariance the combined estimator achieves strictly greater
precision.

The results also highlight robustness to different data-generating processes.
Polynomial and cosine designs yield nearly identical performance at B = 10
and hg = A/2, reflecting that the asymptotic variance depends on the design
distribution and noise rather than the functional form of m()ﬁ Together, these

patterns underscore that the integrated and combined estimators not only con-

%0Only under deliberately coarse grids does the cosine’s quadrature bias become visible, and
such bias can be eliminated entirely by switching to Simpson’s rule.
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Boundary Integrated Combined

Scenario Bias SD  RMSE Bias SD RMSE Cov.95 Bias SD  RMSE
Panel A: Polynomial DGP m(x) = 2x + x?

Uniform — Homo —0.001  0.345 0345 —0.048 1.012 1.012 0.940 —0.005 0.338 0.338
Uniform — Het 0.001  0.404 0403  —0.084  1.160 1.162 0.954 —0.006  0.388 0.388
Trunc. Normal (sd=0.3) -Homo ~ —0.013  0.608 0.607 0.010  1.021 1.020 0.946 —0.009  0.550 0.550
Trunc. Normal (sd=0.3) - Het 0.014 0.701 0.701 0.022  1.390 1.389 0.942 0.016  0.651 0.650
Uniform — Homo [B=8] 0.009 0275 0275 —0.034 0.787 0.787  0.944 0.004  0.266 0.266
Uniform — Homo [B=12] —0.009  0.341 0.341 0.116  1.155 1.160 0.942 0.002  0.336 0.336
Uniform — Homo [n=1000] —0.002 0475 0474  —0.023  1.438 1437 0948 —0.004 0467 0.466
Uniform — Homo [n=4000] 0.010 0221 0.221 —0.044 0.701 0.702 0.952 0.006  0.217 0.217
Panel B: Cosine DGP m(x) = 17%5(7”)

Uniform - Homo 0.000  0.345 0345 —0.045 1.012 1.012 0.940 —0.004 0.338 0.338
Uniform - Het 0.003  0.404 0.403 —0.081 1.160 1.162 0.954 —0.005 0.388 0.388
Trunc. Normal (sd=0.3) - Homo —-0.012  0.608 0.607 0.012  1.021 1.020 0.946 —0.008  0.550 0.550
Trunc. Normal (sd=0.3) - Het 0.016  0.701 0.701 0.025  1.390 1.389 0.942 0.017  0.651 0.650
Uniform — Homo [B=8] 0.011  0.275 0275 —0.031 0.787 0.787  0.946 0.006  0.266 0.266
Uniform — Homo [B=12] —0.009 0.341 0.341 0.118  1.155 1.160 0.942 0.003  0.336 0.336
Uniform — Homo [n=1000] —-0.001 0475 0.474  —0.021 1.438 1.437 0.948 —0.002  0.467 0.466
Uniform — Homo [n=4000] 0.012 0.221 0.221 —0.042 0701 0.701 0.952 0.007  0.217 0.217

Notes. Each row reports Monte Carlo results over nsim = 500 replications with N = 2000 as the
default. X designs: Uniform on [0, 1] or truncated normal A/ (0.5, 0.3%) clipped to [0, 1] (“Trunc.
Normal”). Errors are homoskedastic (¢(x) = 1) or heteroskedastic (¢%(x) = 1 + x). We partition
[0,1] into B equal bins (A = 1/B) and set iy = A/2 (x = 1). The integrated estimator fits local
quadratic regressions of m around midpoints using the triangular kernel K(u) = max{0,1 — |u|}
to estimate m’(x) and aggregates via midpoint quadrature; its feasible SE uses

B 52
02 =20k Y AL, SBp = \/O2/(nid).
b=1  Jo
Here Cx = j "K*(u)? du is the derivative equivalent-kernel constant for local quadratic (computed

numerically); f} is a local density estimate (bin counts over 2hg) and ?rg a local residual MSE from

the derivative fit. The boundary estimator is local linear at 0 and 1 with the same base kernel; its
plug—in variance uses the one-sided equivalent-kernel constants

00 C
Coor = [ KiwPdu,  Coo = [ Ki(wPdy,
—C —00
together with local residual MSEs and boundary densities at 0" and 17. (In our implementation
we set the offset c = 1 and use the same bandwidth multiple at both boundaries.) The combined
estimator is inverse—variance weighted using design—-adaptive asymptotic variances computed

from the realized X. “Bias” is empirical mean minus truth; “SD” is the Monte Carlo standard
deviation; “Cov.95” is empirical 95% coverage of the integrated estimator’s feasible normal CI;

“RMSE” is \/IE[(8 — 6)2].

Table 1: Simulation results: Integrated—Derivative vs Boundary (two DGPs)

form to theory but also deliver practical efficiency gains in finite samples.
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6 Discussions and Conclusions

This paper introduced an integrated-derivative estimator for regression dis-
continuity designs with multiple thresholds. By exploiting interior variation
between cutoffs, the estimator complements conventional boundary estima-
tors, is asymptotically independent from them, and can be combined for ef-
ficiency gains. Our theoretical results establish a central limit theorem and
demonstrate the potential for precision improvements, which are supported
by simulation evidence.

The approach also has limitations. A key assumption is that the condi-
tional expectation function is smooth between thresholds, so that derivative
estimates can be consistently recovered from the interior. In applications where
the running variable may induce unobserved interventions or latent disconti-
nuities between observed cutoffs, this continuity assumption may be restric-
tive. Moreover, while asymptotic independence ensures efficiency gains in
large samples, in finite samples the integrated estimator alone can be noisy,
and gains from combination depend on the design and data availability near
boundaries. Finally, the method focuses on settings with known and ordered
thresholds; extensions to cases with stochastic or endogenous cutoffs remain
open for future research. These caveats highlight that our estimator is best
viewed as a complement to, rather than a replacement for, conventional boundary-

based RD methods.
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Appendix

A Proofs

Lemma 2 (Convergence in Distribution). Under Assumptions for each sample

size N, consider the triangular array
{wN,,'SZ' 1= 1,...,N},

where wy ; is the effective weight for the outcome of the ith observation Y; when using

local-polynomial first-derivative estimates, with bin width 2h = 2h(N). Define

N N
Ty =) wn,iéi, v} = Var(Ty | (X1,...,Xn)) = Zw%\,l o (X;).
i=1 i=1

Suppose there exists a deterministic sequence an > 0 such that

2 .2 p 2
ay oy —— O > 0.
N®N N—oo

Then the Lyapunov condition holds conditionally on {X;}, i.e.,

, 1 - 246

and thus, by the triangular-array Lyapunov Central Limit Theorem,

anTn a
NG = N(0,1).

Proof. For each bin center cj, the local-polynomial fit for m’(c;) yields weights

for observation i in bin I:

Wib = Nh2j’(ch) K*<XZ;%> {1rou(n s ViEF) 1
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Since each X; belongs to exactly one bin I;,(;), the integrated-estimator weight

is

_ _ 2 * Xi — Cb(i) log N
wl\],i =2h wi,b(i) = Nhf(cb(l)) K ( A ) {1 + Op(l’l + W) }

Hence, using the boundedness of K* and positivity of f(-),

G log N N, 1
< =L = — ).
T (1 +0y (h + N )) , and i:§1 wy; = Op NI

Conditional on X, the weights {wy ;} are deterministic and the summands

|wN,z'

{wy j¢;} are independent with mean zero.

Verification of the Lyapunov condition. By Assumption|} there exist § > 0

and C < oo such that uniformly in i,
E[e/2 | x| < C.

Thus,

N
E[|wy &> | X1,..., Xn] < CY |wn, 2+

i=1

M=

Il
—_

Using the bounds above,

al 246 1
Z% [wn,i| 7" = Op <N1+5h2+5) :
1=

Since ¢2(-) is bounded,

and hence

1
2 \145/2 _
(o) =Op (N1+5/2h2+5) :
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Therefore, N 0
Yisq w0 1 p
(U%\])Hé/z =0y N2 | Noeo 0.

This verifies the Lyapunov condition. By the triangular-array Lyapunov theo-

rem, conditionally on (Xj, ..., Xy),

N
Y1 WN,iE

T
N _ = 4 N(0,1
Y oy Yty w02 (X;)

Given a%v3, 2oz, Slutsky’s lemma yields

T
INCN 4 A7 (0,1).

5

This completes the proof. O

Lemma 3 (Midpoint Rule Approximation Error). Let ¢ € C*([0,1]). Partition
[0,1] into B subintervals of length 2h = 1/B, with midpoints ¢, = (2b — 1)h for
b=1,...,B. Define

1 B
E = /0 g(u)du — 2h Zg(cb).

b=1
Then

_133// 4
E=3h b;g (cp) + O(n*).

Moreover, as h — 0,

so in particular E — 0.
Proof. Partition [0,1] into B subintervals of width 2/ with 2k B = 1. Leta, =

(b—1)-2hand ¢, = ap + h. On [ay, ap + 2h],

ap+2h 1 1
[ gtuydu =2ng(ey) + 58" () B+ 5 8 () I,

ap
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for some 1, € [ap, a, + 2h]. Summing gives
1,3 158
E= 1Y 8" @)+ 51 Y gWm)
3 b=1 60 b=1

Since ¢(*) is continuous (hence bounded) and B = 1/(2h), i y2  sWp) =
O(h*). Thus

_133 " 4
= gh b;g (cp) + O(HY).

By the midpoint Riemann-sum error for ¢” € C?,
B
21y g (c) = / g (u)du+0(12) = g'(1)—g'(0)+0(?),
b=1

SO 25:1 <" (cp) = %[g’(l) —¢'(0)] + O(h). Substituting,

2
E = 375 18'(1) ~ £'(0)] + O() + O(i) = " ly) - g'(0)] + 00*)

Lemma 4 (Aggregate Bias of Local Polynomial Estimator). Under Assumptions}-
@ let B1(cy) denote the degree-p local-polynomial estimator of m'(c, ). Partition [0,1]
into B subintervals of width 2h = 1/ B with midpoints ¢, = (2b — 1)h, and define

B B
R :=21Y PBilcy) — 2n) m'(c
b=1 b=1

Let the aggregate bias be By (h) := E[R | X|. Then

th+1

By(h) = CES

1 B

(/ ubt1 K*(u)du> Z m(p+l)(ch) + ry(h), (7
-1 b=1

where, with w, 1) (t) 1= sup|,_, lm (P (x) — mP) (y)],

v < ChP @, (B) +h} = o(h") (1 —0),
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Moreover, by continuity of m(P+1),

B 1
2y P (c,) — /0 P (wydu = mWP (1) — mP)(0),
b=1

WP

Bu(h) = (p+1)!

(/_11 ub+l K*(u)du) [mP) (1) —mP)(0)] + o(h?). (8)

Here K*(-) is the equivalent kernel defined in Assumption

Proof. Fix an interior midpoint ¢, € [h,1 — h]. The standard equivalent-kernel
expansion for local-polynomial derivative estimators (e.g. Fan and Yao| 2005)

yields, conditionally on X,

Elpr(c) | X] = m'() = o ’fl)! mP+) (c,) /jl uPHK (u)du + P py(h),

where the remainder satisfies the bound

lop(h)| < C{wmw) (h) + h}.

(The term w,, (,+1) (1) controls the within-window variation of m(P+Y); the +h
term captures smooth design effects via f and is standard under Assump-
tion2])
Summing over b = 1, ..., B and multiplying by 2k,
B 2 pptl

By(h) =21y (E[B X]—m' = PHIK* (1) d ™ () ZhBhP h
() =20 Y- (Blfa(en) | X1 = (e)) = 5 ([ 00K ) ) YoomlP =) 20 32 W)

b=1 b=1 =

Because 21 Yb_; 1 = 1, the aggregate remainder satisfies
B
21 Y 1pp()| < W suploy(n)] < ChP{w, o (h) +H} = o(h),
b=1 b
which proves (7). Finally, since m(P+1) is continuous on [0,1], the midpoint
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Riemann sums converge to the integral:
B
2n Ym0 (c,) — / m P () du = mP) (1) — mP)(0),
b=1 :

and substituting into (7) yields (8). O

Lemma 5 (Variance of the Estimator). Under Assumptions let By (cy) be the
degree-p local-polynomial estimator of m’(cy,). Partition [0,1] into B subintervals of

width 2h = 1/ B, with midpoints ¢, = (2b — 1) h for b = 1,..., B, and define
B A
Z B1(co)-

Then, conditional on the design X,

VarBavg] = ﬁ/_ll K*2(u) du /01 (}2((5)) u (ﬁ)

Proof. Because the kernel has support [—1,1] and each local fit at ¢, uses only

observations with |X; —c,| < h, while bins have width 2k and are disjoint,
the windows [¢, — K, ¢, + h] coincide with bins. Thus, given X, the sets of
observations used to form {B;(c;)}E_, are disjoint; with independent errors,

the estimators are independent conditionally on X. Hence

R B B .
Var [Bavg)| = Var (Zhb; Brle)) = 4i? Y VarlBi(c,) | X].

For interior points ¢, € [h,1 — h], a standard local-polynomial variance ex-

pansion (e.g. Fan and Yao, 2005) gives, uniformly in b,

2 c
V(e | X] = sl [ K+ of ).
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Summing over b and extracting 4h2,

e >) + o).

where the o((Nh?)~!) remainder uses the uniformity and 4h? - B = 2h.

Var ,Bavg N (/ K*2 du

Let q(u) := ¢?(u)/f(u). By Assumptionsand g is continuous on [0, 1].

Therefore its midpoint Riemann sums converge:

B 1
2h'Y q(cy) = /0 q(u)du + o(1),

b=1

SO

B o2e) 1 ['o(w) .
e = anh o et olk)

Substituting back yields

Vo] = sz [ K20 [ Gtk o).

as claimed. O
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