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Abstract

This paper develops an estimator for regression discontinuity designs

(RDD) with multiple thresholds. We construct an integrated–derivative

estimator that recovers the outcome difference by numerically integrating

nonparametric slope estimates between thresholds. We derive its asymp-

totic distribution, establishing a central limit theorem with a feasible vari-

ance formula. The integrated estimator is asymptotically independent of

the standard boundary estimator, which enables an inverse–variance com-

bination that is more efficient. Simulations confirm the theoretical predic-

tions: efficiency gains are modest under uniform designs and more pro-

nounced when data are sparse near the cutoffs.

1We thank Chen Zhou, Guido Imbens, Stefan Wager, Peter Hull, and Jonathan Roth for their
constructive comments.
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1 Introduction

In many empirical settings, researchers face running variables that cross mul-

tiple known thresholds, each inducing a discrete change in treatment. Regres-

sion Discontinuity Designs (RDD) are often extended to such contexts either

by recentering and pooling discontinuities or by estimating the local disconti-

nuity at each threshold separately and then aggregating the results to infer an

average effect (Cattaneo et al., 2016; Bertanha, 2020). This approach captures

the immediate impact of crossing a threshold but typically ignores how the

outcome evolves between thresholds.

This paper proposes a complementary strategy. We study settings with a

continuous running variable z ∈ R and an outcome E[y | z] = g(z), where g(·)

is smooth between a finite number of known discontinuities {t1, t2, . . . , tK}.

Rather than focusing solely on the jumps at each threshold, we exploit infor-

mation from the interior of each segment. Specifically, we construct an estima-

tor by numerically integrating a nonparametrically estimated derivative g′(z)

between thresholds, thereby capturing the accumulated change in the outcome

across the interval. Whereas standard RDD estimators rely on outcome differ-

ences near the cutoffs, our approach draws on observations throughout the

interior. The two estimators therefore use largely distinct subsets of the data,

and we show they are asymptotically independent.

This property enables a natural efficiency gain. Since both estimators tar-

get the same parameter but with independent information, we combine them

using inverse-variance weights. The resulting estimator is more efficient than

either component alone, particularly when g(z) carries information between

thresholds or when data are sparse at the boundaries.

Our contributions are threefold. First, we introduce the integrated–derivative

estimator, which leverages variation between thresholds in multiple-cutoff RDD

designs. Second, we establish its asymptotic properties, including a CLT and

variance expression. Third, we show that combining it with the conventional

boundary estimator can improve efficiency in both theory and simulations.
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The econometric foundations of regression discontinuity (RD) designs were

established by Hahn et al. (2001), who showed that treatment effects at a cut-

off can be identified as discontinuities in conditional expectations and derived

the asymptotic behavior of local polynomial estimators. Subsequent work re-

fined inference by addressing the boundary bias problem: Calonico et al. (2014)

proposed robust bias–corrected intervals, and Calonico et al. (2020) developed

bandwidth selectors optimized for coverage accuracy. Recent advances fur-

ther broaden the scope of RD. Imbens and Wager (2019) derive minimax lin-

ear estimators that deliver uniformly valid confidence intervals and naturally

extend to multivariate settings, while Calonico et al. (2025) provide a frame-

work for analyzing treatment effect heterogeneity. Parallel to these develop-

ments, a smaller strand considers designs with multiple thresholds. Catta-

neo et al. (2016) interpret pooled multi–cutoff estimators as weighted averages

of local effects, and Bertanha (2020) proposes estimators that optimally com-

bine information across cutoffs to target policy–relevant parameters. These ap-

proaches, however, remain boundary-based, relying primarily on observations

near each cutoff. Our contribution is to complement this literature with an

integrated–derivative estimator that, under minimal continuity assumptions

and without imposing structural structure, exploits interior variation between

thresholds. The estimator delivers a feasible central limit theorem with an ex-

plicit variance formula and is asymptotically independent of standard bound-

ary estimators, enabling efficiency gains through inverse–variance combina-

tion.

The structure of the paper is as follows. Section 2 introduces the problem

setup and reviews the standard multiple-threshold RD framework. Section 3

develops our integrated–derivative estimator in a simple single-segment set-

ting and compares it with boundary-based estimation. Section 4 extends the

approach to a general case. Section 5 presents simulation evidence. Section 6

concludes with a discussion of implications and potential extensions.
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Figure 1: Illustration of Multiple Cutoffs in Regression Discontinuity Design

2 Problem Setup; Regression Discontinuity Design

with Multiple Thresholds

Empirical research often employs Regression Discontinuity Designs (RDD) in

settings where decisions hinge on multiple cutoffs. For example, children’s

school-entry dates are determined by birthdate cutoffs: being born just before

or after a specific date decides whether a child starts school in one academic

year or the next. This cutoff is applied repeatedly across multiple cohorts, cre-

ating a series of thresholds. Similarly, neonatal care policies can change de-

pending on whether a baby is born just before or after midnight, influencing

the care duration provided at every midnight boundary (see, for example, Al-

mond and Doyle, 2011; Fredriksson and Öckert, 2014; Persson et al., 2021).

These scenarios involve multiple thresholds, t1, . . . , tK, along the range of

the running variable, zi, each potentially inducing a discontinuity in the con-

ditional expectation of the outcome, yi. The conditional expectation is denoted

as g(zi) = E[yi | zi], which captures the relationship between the running

variable and the expected outcome. For instance, these outcomes might repre-

sent students’ expected grades affected by school-entry timing or the average

health of newborns impacted by changes in neonatal care protocols. Figure 1

shows an illustration of such discontinuities.
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To formalize, consider N independent observations (zi, yi), where zi ∈ [a, b].

The function g(·), representing the conditional expectation of yi given zi, is

smooth (infinitely differentiable or at least Cp+1 for some p) except at the K

known thresholds t1, . . . , tK, where:

g(t−k ) ̸= g(t+k ), k = 1, . . . , K.

Each threshold tk induces a local jump in g(·), defined as:

τk = g(t+k )− g(t−k ).

Researchers often summarize these local jumps by estimating a weighted

average of the discontinuities:

τ =
K

∑
k=1

ωkτk, with
K

∑
k=1

ωk = 1.

The weights ωk reflect the relative importance assigned to each threshold. If

no specific threshold is prioritized, equal weights ωk = 1/K may be used. Al-

ternatively, weights can be proportional to the density of observations at each

threshold. This weighting is automatically handled in standard RDD setups

by recentering and pooling all thresholds (Cattaneo et al., 2016).

Rewriting τ, we have:

τ = ωKg(t+K )− ω1g(t−1 )−
K

∑
k=2

[
ωkg(t−k )− ωk−1g(t+k−1)

]
,
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or equivalently2:

τ = ωKg(t+K )− ω1g(t−1 )−
K

∑
k=2

δk, (1)

where:

δk = ωkg(t−k )− ωk−1g(t+k−1).

3 The Estimator for a Single Segment

First, we consider a simplified scenario by estimating the parameter

δ = m(1)− m(0) =
∫ 1

0
m′(u)du (2)

on a single interval normalized to [0, 1]. Later, we will extend this discus-

sion to the general setting. We have independent observations {(Xi, Yi)}N
i=1

satisfying the model3

Yi = m(Xi) + εi, E[εi | Xi] = 0, Var(εi | Xi) = σ2(Xi).

Using the integral form of Equation 2, we focus on estimating the deriva-

tives of m(.) nonparametrically by partitioning the interval [0, 1] into B subin-

tervals ("bins") of the same length 2h with h = 1
2B , each centered at points cb. At

each center cb, we construct a local polynomial estimator of the first derivative

m′(cb) using observations (Xi, Yi) that lie within the bin Ib = [cb − h, cb + h].

2As K → ∞, assuming the weights ωk vanish appropriately (e.g., limK→∞ ωk = 0), the parame-
ter τ converges to:

lim
K→∞

τ = −
∞

∑
k=2

δk .

Intuitively, as the number of thresholds increases, τ represents the aggregated sum of changes
in the expected outcome between consecutive thresholds. In this way, multiple-threshold RDD
scenarios simplify to a series of individual differences across segments, which are weighted and
combined to produce the overall parameter of interest.

3On the segment [tk−1, tk ], let ∆k := tk − tk−1 > 0 and normalize x = (z − tk−1)/∆k ∈ [0, 1]. We
then define

m(x) = g
(
tk−1 + x ∆k

)
,

so that m(0) = g(t+k−1), m(1) = g(t−k ), and m′(x) = ∆k g′
(
tk−1 + x ∆k

)
.
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Specifically, we estimate m′(cb) by solving the weighted least squares problem:

β̂(cb) = arg min
β

∑
Xi∈Ib

(
Yi −

p

∑
j=0

β j(Xi − cb)
j

)2

Kh(Xi − cb),

with kernel Kh(u) = K(u/h)/h controlled by bandwidth h. The estimator of

interest is the first derivative:

β̂1(cb) = eT
2 β̂(cb) =

N

∑
i=1

wi,bYi, (3)

where wi,b = wT
(

Xi−cb
h

)
, and wT(u) is given by:

wT(u) = eT
2 S−1

N [1, uh, . . . , (uh)p]T
K(u)

h
,

with K(u) being a kernel function and SN a matrix defined as a matrix with its

(i, j)th element being SN,i+j with:

SN,j =
N

∑
i=1

Kh(Xi − cb)(Xi − cb)
j.

Integrating these derivative estimates over the interval yields the final esti-

mator:

β̂avg = 2h
B

∑
b=1

β̂1(cb) =
N

∑
i=1

wN,iYi,

where wN,i is the total weight assigned to observation i.

We impose the following assumptions for our theoretical analysis:

Assumption 1 (Smoothness of m). m ∈ Cmax{p+1, 5}([0, 1]) for some integer

p ≥ 1.

Assumption 2 (Design Density). Each Xi takes values in [0, 1] with a density

f that is continuous, strictly positive on [0, 1] (no atoms), and has a bounded

second derivative.

Assumption 3 (Bounded Conditional Variance). σ2(x) = Var(εi | Xi = x) is
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continuous and bounded on [0, 1].

Assumption 4 (Kernel Conditions). The kernel K is symmetric, bounded, sup-

ported on [−1, 1], and satisfies

∫ 1

−1
K(u) du = 1,

∫ 1

−1
|u|p+1 |K(u)| du < ∞.

Define the equivalent kernel for the derivative estimator by

K∗(u) = eT
2 S−1(1, u, . . . , up)TK(u),

where S is a (p + 1)× (p + 1) matrix with entries

Si,j = µi+j−2 and µj =
∫

uj K(u) du.

It follows that K∗ is also supported and bounded on [−1, 1].

Assumption 5 (Bandwidth). Let h = h(N) → 0 as N → ∞ and assume

Nh
log N

→ ∞, Nh2 → ∞,
√

N h3 → 0.

Assumption 6 (Higher-Order Moment of εi). There exists δ > 0 and a constant

C < ∞ such that

E
[
|εi|2+δ

∣∣ Xi = x
]
≤ C for all x ∈ [0, 1],

uniformly in i.

Theorem 1 (Asymptotic Distribution of the Integrated Derivative Estimator).

Let {(Xi, Yi)}N
i=1 be independent observations from the model

Yi = m(Xi) + εi, E
[
εi | Xi

]
= 0, Var

(
εi | Xi

)
= σ2(Xi

)
,

where Xi ∈ [0, 1] has density f . Suppose Assumptions 1–6 hold with polynomial

degree p ≥ 2, so that m(.) is (p + 1)-times continuously differentiable on [0, 1], and
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we use a degree-p local polynomial estimator to estimate m′(·). Define

Γ =
∫ 1

0
m′(u)du = m(1)− m(0).

Partition [0, 1] into B subintervals each of length 2h = 1/B, with midpoints cb =

(2b − 1) h for b = 1, . . . , B. For each midpoint cb, let β̂1(cb) be the local polynomial

estimator of the derivative: m′(cb). Then define4

β̂avg = 2h
B

∑
b=1

β̂1
(
cb
)
.

Then, under Assumptions 1–6, and conditional on the design X = {X1, . . . , XN}:

√
N h2

(
β̂avg − Γ − Bias

)
d−→ N

(
0, 2

∫ 1

−1

[
K∗(u)

]2 du
∫ 1

0

σ2(u)
f (u)

du
)

,

where

• If p > 2, then the local-polynomial bias is o(h2), and the dominant bias term

comes from the midpoint rule (Lemma 3):

Bias = −h2

6

[
m′′(1) − m′′(0)

]
.

• If p = 2, both the midpoint rule and the local-polynomial estimator contribute

to the bias at order h2. From Lemma 3 and Lemma 4, one obtains

Bias =
h2

6

( ∫ 1

−1
u3 K∗(u)du − 1

) [
m′′(1)− m′′(0)

]
.

4The midpoint aggregation induces an O(h2) quadrature error for
∫ 1

0 m′(u) du. If a composite
quadrature of global order q ≥ 2 is used instead, the quadrature error becomes O(hq). Since the
aggregate local–polynomial bias is O(hp), the deterministic remainder is O

(
hmin{p, q}). Under the

normalization
√

Nh2, it suffices that
√

N h 1+min{p, q} −→ 0.

Thus, while the theorem is stated under midpoint aggregation (q = 2, requiring
√

Nh3 → 0), the
bandwidth restriction is not pivotal: with composite Simpson (q = 4) the requirement relaxes to√

Nh4 → 0 when p = 3, and to
√

Nh5 → 0 when p ≥ 4. Comparable relaxations obtain with
Richardson–extrapolated midpoint (effective q = 4) or higher-order Newton–Cotes/Gaussian
rules.
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Proof. Write

β̂avg − Γ = 2h
B

∑
b=1

(
β̂1(cb)− m′(cb)

)
︸ ︷︷ ︸

local-polynomial term

+
{

2h
B

∑
b=1

m′(cb)−
∫ 1

0
m′(u) du

}
︸ ︷︷ ︸

midpoint (quadrature) term

.

Bias. By Lemma 4,

2h
B

∑
b=1

(
β̂1(cb)−m′(cb)

)
=

hp

(p + 1)!

(∫ 1

−1
up+1K∗(u) du

)[
m(p)(1)−m(p)(0)

]
+ o(hp).

By Lemma 3 with g = m′,

2h
B

∑
b=1

m′(cb)−
∫ 1

0
m′(u) du = −h2

6

[
m′′(1)− m′′(0)

]
+ O(h4).

Hence:

• If p > 2, then hp = o(h2) and the leading bias is the midpoint term:

Bias = −h2

6
[
m′′(1)− m′′(0)

]
,

(
β̂avg − Γ − Bias

)
= o(h2).

• If p = 2, the two h2 contributions add:

Bias =
h2

6

(∫ 1

−1
u3K∗(u) du − 1

)[
m′′(1)−m′′(0)

]
,

(
β̂avg −Γ−Bias

)
= O(h4).

Stochastic term and variance. Let wN,i be the effective weights from Lemma 2,

so that

β̂avg − E[β̂avg | X] =
N

∑
i=1

wN,i εi.

By Lemma 5,

v2
N := Var

( N

∑
i=1

wN,iεi

∣∣∣ X
)
=

2
Nh2

(∫ 1

−1
K∗2(u) du

)(∫ 1

0

σ2(u)
f (u)

du
)
+ o
(

1
Nh2

)
.
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Therefore with αN =
√

Nh2,

α2
Nv2

N → Ω2 := 2
(∫ 1

−1
K∗2(u) du

)(∫ 1

0

σ2(u)
f (u)

du
)

in probability.

CLT. The Lyapunov condition for the triangular array {wN,iεi} holds by

Lemma 2, so

αN
Ω

(
β̂avg − E[β̂avg | X]

)
d
=⇒ N (0, 1) conditionally on X.

Combine this with the bias decomposition and Slutsky’s lemma to obtain

√
Nh2

(
β̂avg − Γ − Bias

) d
=⇒ N

(
0, 2

∫
K∗2

∫
σ2/ f

)
.

Finally, the residual deterministic term after subtracting Bias satisfies

RN =


O(h4) + o(h2), p = 2,

O(hp) + O(h4) + o(hp), p > 2,

so

√
Nh2 RN =


O(

√
Nh6) + o(

√
Nh3), p = 2,

O(
√

Nhp+1) + O(
√

Nh6) + o(
√

Nhp+1), p > 2,
= o(1)

by Assumption 5. This completes the proof.

The proof mirrors the estimator’s decomposition. Lemma 2 yields a CLT for

the single linear form in the errors defined by the effective weights (no per–bin

CLTs are needed.) Lemma 5 translates the weight geometry into the prod-

uct–form variance 2
∫

K∗2 ·
∫

σ2/ f , which is free of the unknown regression

function m. On the deterministic side, Lemma 4 shows that the aggregate lo-

cal–polynomial error reduces to a boundary term, while Lemma 3 converts the

midpoint quadrature error into a boundary expression. Together these yield

the leading h2 bias used for centering in Theorem 1.
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3.1 Comparison with Level Estimation at the Boundaries

In this section, we compare the bias and variance of our proposed estimator to

an alternative approach that estimates δ in (2) by directly estimating m(1) and

m(0) using local polynomial regression at the boundaries and subtracting the

results. This boundary-based approach is analogous to the commonly used

regression discontinuity design (RDD) estimators, which rely on estimating

levels on either side of the threshold and calculating their difference.

From Fan and Yao (2005), the asymptotic behavior of the boundary-based

estimator is:

√
Nh
[

δ̂levels − δ − hp+1

(p + 1)!

(
m(p+1)(1−)

∫ c

−∞
up+1K∗

1−c(u) du − m(p+1)(0+)
∫ ∞

−c
up+1K∗

c (u) du
)]

d→ N
(

0,
∫ c

−∞
K∗

1−c(u)
2 du

σ2(1−)
f (1−)

+
∫ ∞

−c
K∗

c (u)
2 du

σ2(0+)
f (0+)

)
,

(4)

where δ̂levels = m̂(1 − ch) − m̂(0 + ch) for a small positive constant c, and

K∗
c (u) = eT

2 S−1
c (1, u, . . . , up)TK(u). Here, Sc is defined similarly to S, replacing

µj with µj,c =
∫ ∞
−c ujK(u) du, while K∗

1−c(u) and S1−c are defined analogously,

replacing µj with µj,1−c =
∫ c
−∞ ujK(u) du.

From equation (4), compared to our proposed estimator in theorem (1) with

the same h and p, the asymptotic bias and variance of the boundary-based

estimator decrease at faster rates. Consequently, the boundary estimator δ̂levels

is asymptotically more efficient, achieving lower bias and variance.

However, when data near the boundaries is sparse or the outcome variance

is high in those regions, the integral-based estimator β̂avg may be informative

in small samples. By leveraging data from the entire interval, it mitigates the

instability typically associated with boundary-based estimates. Additionally,

the theoretical variance constants differ between the two estimators, making

it nontrivial to determine a priori whether the integral-based estimator will

yield a higher or lower variance compared to the level-based estimator in small

samples.
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However, the main advantage of our estimator is that it is asymptotically

independent from the standard estimator based on the level difference (Lemma

1.) The boundary estimator δ̂levels uses data close to the boundaries (within in-

tervals of length h), while the integral-based estimator β̂avg relies on data from

the entire unit interval. Consequently, the overlap in data usage between the

two estimators diminishes as h → 0. Importantly, this independence allows for

combining the two estimators using variance-weighted averages to construct

an estimator that is more efficient than either one individually. We demonstrate

this approach in Section 5.

Lemma 1 (Asymptotic independence via overlap bound). Let β̂avg be the integrated-

derivative estimator with bandwidth h as in Theorem 1, and write

β̂avg − E[β̂avg | X] =
N

∑
i=1

wi εi, max
i

|wi| ≤
C

Nh
,

N

∑
i=1

w2
i = Θp

( 1
Nh2

)
.

Let the boundary levels at 0 and 1 be estimated by one-sided degree-p local polynomials

with asymmetric equivalent kernels and bandwidths h0 = c0h (at 0) and h1 = c1h (at

1), where 0 < cmin ≤ c0, c1 ≤ cmax < ∞:

δ̂levels = m̂(1−)− m̂(0+), δ̂levels − E[δ̂levels | X] =
N

∑
i=1

vi εi,

with

max
i

|vi| ≤
C

Nh
,

N

∑
i=1

v2
i = Θp

( 1
Nh

)
,

and vi ̸= 0 only if Xi ∈ [0, A0h] ∪ [1 − A1h, 1], where A0, A1 > 0 depend only on

the one-sided equivalent kernels and on c0, c1.

Under Assumptions 1–6 (in particular Nh → ∞ and h → 0 and Assumption 2),

conditionally on X,

Cov
(

β̂avg, δ̂levels | X
)
= Op

(A0 f (0+) + A1 f (1−)

Nh

)
,
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and

Corr
(

β̂avg, δ̂levels | X
)
= Op

((
A0 f (0+) + A1 f (1−)

)
h1/2

)
−→ 0.

In particular, together with the marginal CLTs for β̂avg (Theorem 1) and the standard

boundary local-polynomial CLT for δ̂levels, this implies that the jointly scaled vector

is asymptotically bivariate normal with a diagonal covariance, i.e. the estimators are

asymptotically independent.

Proof. Write the centered forms

Sβ = β̂avg − E[β̂avg | X] =
N

∑
i=1

wiεi, Sδ = δ̂levels − E[δ̂levels | X] =
N

∑
i=1

viεi.

Then

Cov(Sβ, Sδ | X) =
N

∑
i=1

wivi σ2(Xi).

By construction of the one-sided boundary fits, vi ̸= 0 only when Xi ∈ Oh :=

[0, A0h] ∪ [1 − A1h, 1]. Since f is bounded with finite one-sided limits and has

no atoms at {0, 1},

P(Xi ∈ Oh) = A0h f (0+) + A1h f (1−) + o(h),

so

#{i : Xi ∈ Oh} = N
(

A0 f (0+)+ A1 f (1−)
)
h+ op(Nh) = Op

(
Nh (A0 f (0+)+ A1 f (1−))

)
.

Using maxi |wi| ≤ C/(Nh), maxi |vi| ≤ C/(Nh), and boundedness of σ2(·),

∣∣Cov(Sβ, Sδ | X)
∣∣ ≤ sup

u
σ2(u) ∑

i:Xi∈Oh

|wivi| ≤ C · #{i : Xi ∈ Oh} ·
C

Nh
· C

Nh
= Op

(A0 f (0+) + A1 f (1−)

Nh

)
.

For the variances, by the standard expansions,

Var(Sβ | X) = Θp

( 1
Nh2

)
, Var(Sδ | X) = Θp

( 1
Nh

)
.
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Hence

Corr(Sβ, Sδ | X) =
Cov(Sβ, Sδ | X)√

Var(Sβ | X)Var(Sδ | X)
=

Op
(
(A0 f (0+) + A1 f (1−))/(Nh)

)√
(1/(Nh2)) (1/(Nh))

= Op

(
(A0 f (0+) + A1 f (1−)) h1/2

)
→ 0.

This proves the stated covariance and correlation bounds.

Finally, the marginal CLTs for the linear forms Sβ and Sδ (Theorem 1 and

the boundary local-polynomial CLT, under the same moment and bandwidth

conditions) imply that the jointly normalized vector is asymptotically bivariate

normal. Since the off-diagonal term vanishes by the lemma, the limit covari-

ance is diagonal; thus the estimators are asymptotically independent.

4 The Estimator for General Cases

This section discusses the estimation of the weighted average of expected out-

comes at thresholds for a single segment (z ∈ [0, 1]) with arbitrary weights:

δw = ω1m(1−)− ω0m(0+).

By the product rule (πm)′ = π′m + πm′ and integration by parts, we have the

representation

δw =
∫ 1

0
π(u)m′(u) du +

∫ 1

0
π′(u)m(u) du, (5)

for any function π : [0, 1] → R with π(1−) = ω1 and π(0+) = ω0.

Estimator. Let {Ib}B
b=1 be the disjoint bins of width 2h, with midpoints cb =

(2b − 1)h. For each cb, let β̂1(cb) be the degree-p local-polynomial estimator

of m′(cb) from Theorem 1. Given a (possibly data-chosen) quadratic weight
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function π(·) with π(1−) = ω1 and π(0+) = ω0, define

δ̂w := 2h
B

∑
b=1

π(cb) β̂1(cb) +
∫ 1

0
π′(u) m̂(u) du, (6)

where m̂ is any estimator satisfying
∫ 1

0 q(u) m̂(u) du =
∫ 1

0 q(u)m(u) du+Op(N−1/2)

for each fixed quadratic q.5

Theorem 2 (Weighted integrated derivative). Suppose the assumptions of Theo-

rem 1 hold (including the bandwidth condition) with local-polynomial degree p ≥ 2.

Let π(·) be a quadratic polynomial with π(1−) = ω1, π(0+) = ω0 and
∫ 1

0 π′(u) m̂(u) du =

0. Then, conditional on X,

√
Nh2

(
δ̂w − δw − Biasπ

)
d
=⇒ N

(
0, 2

∫ 1

−1
K∗2(u) du

∫ 1

0

π2(u) σ2(u)
f (u)

du
)

,

where the bias satisfies

Biasπ =


−h2

6

[
(πm′)′(1) − (πm′)′(0)

]
+ o(h2), if the local-poly degree > 2,

h2

6

( ∫ 1

−1
u3K∗(u) du − 1

) [
(πm′)′(1) − (πm′)′(0)

]
+ o(h2), if the degree = 2,

with (πm′)′(u) = π′(u)m′(u) + π(u)m′′(u).

Proof. Write

δ̂w − δw = 2h ∑
b

π(cb)
(

β̂1(cb)− m′(cb)
)

︸ ︷︷ ︸
A

+

{
2h ∑

b
π(cb)m′(cb)−

∫ 1

0
π(u)m′(u) du

}
︸ ︷︷ ︸

B

+
∫ 1

0
π′(u)

(
m̂(u)− m(u)

)
du︸ ︷︷ ︸

C

.

Term A is handled by Lemma 4 with the factor π(cb) inside the sum: when the

5If π(·) is selected from the quadratic family by imposing the sample orthogonality∫ 1
0 π′(u) m̂(u) du = 0 together with the endpoint constraints, then the second term in (6) is zero by

construction, and δ̂w = 2h ∑b π(cb)β̂1(cb) in practice.
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local-polynomial degree is > 2, A = o(h2); when it is 2, A contributes an h2

term with coefficient
∫

u3K∗(u) du. Term B is the midpoint quadrature error

with g(u) = π(u)m′(u); Lemma 3 gives

B = −h2

6

[
(πm′)′(1)− (πm′)′(0)

]
+ O(h4).

Term C is a sample moment error of the form
∫

q(u)
(
m̂(u) − m(u)

)
du with

q = π′ quadratic; by assumption C = Op(N−1/2), hence

√
Nh2 C =

√
h2 Op(1) = op(1) as h → 0.

Collecting A and B yields the stated Biasπ (the O(h4) and o(h2) remainders

are negligible under
√

Nh2), and the variance and CLT follow by repeating the

argument of Lemma 5 with the extra factor π(cb) and invoking Lemma 2. This

proves the claim.

Remark 1 (Data-chosen π is first-order negligible). If π(·) is selected from the

quadratic family by the constraints π(1−) = ω1, π(0+) = ω0 and the sample

orthogonality
∫ 1

0 π′(u) m̂(u) du = 0, then the second term of (6) is exactly zero

in implementation. Moreover, letting π∗ denote the population solution with∫ 1
0 π∗′(u)m(u) du = 0, one has ∥π̂ − π∗∥∞ = Op(N−1/2) and

√
Nh2

(
δ̂w(π̂)− δ̂w(π

∗)
)
= op(1).

Thus, to first order, the stochastic choice of π does not affect the limit law in

Theorem 2.

The estimators for each interval difference in eq. 1 use disjoint observa-

tions between thresholds. Under the fixed-design, with independent errors,

the segment-level estimators are independent. Each estimator is asymptoti-

cally normal, so any finite linear combination is also asymptotically normal

with variance being the weighted sum of the segment variances. We therefore

focus on a single interior segment in the next section.
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5 Simulations and Empirical Demonstration

We compare three estimators of the boundary difference δ = m(1) − m(0):

(i) Boundary local linear (LL), δ̂bnd = m̂(1) − m̂(0), using one–sided local lin-

ear fits at 0 and 1 with triangular kernel K(u) = max{0, 1 − |u|}; (ii) an In-

tegrated–Derivative estimator that rewrites δ =
∫ 1

0 m′(x) dx and estimates lo-

cal slopes m′(cb) at midpoints cb via local quadratic regression, aggregated

by composite midpoint quadrature; and (iii) a Combined estimator, δ̂comb =

wbndδ̂bnd + wintδ̂int, with inverse–variance weights computed once per setting

from asymptotic variance formulas.

We partition [0, 1] into B equal bins (∆ = 1/B) and set h0 = ∆/2 (κ = 1).

For bin b, we run a local quadratic regression of Y on (1, X − cb, (X − cb)
2) with

triangular weights on |X − cb| ≤ h0, and take the slope β̂1(cb) as m̂′(cb). The

integrated estimator is

δ̂int =
B

∑
b=1

∆ β̂1(cb).

We use the sample equivalent variance formulas:

Ω2 = 2CK

B

∑
b=1

∆
σ2

b
fb

, ŜEint =
√

Ω̂2/(nh2
0), Ω̂2 = 2CK ∑

b
∆

σ̂2
b

f̂b
,

where CK =
∫

K∗(u)2du is the derivative equivalent–kernel constant for lo-

cal quadratic (computed numerically), f̂b is a local density estimate based on

counts in [cb − h0, cb + h0], and σ̂2
b is the local residual MSE from the derivative

fit. For the boundary LL estimator, the plug–in variance uses the one–sided

equivalent–kernel constant C0 =
∫

K∗
c (u)2du with local residual MSEs and

boundary densities.

We fix a draw of X1, . . . , XN from either Uniform[0, 1] or a truncated nor-

mal N (0.5, 0.32) clipped to [0, 1] and generate Yi = m(Xi) + εi with εi ∼

N (0, σ2(Xi)), where σ(x) = 1 (homoskedastic) or σ2(x) = 1+ x (heteroskedas-

tic). We repeat nsim = 500 times by redrawing the sample, conditional on

X. Asymptotic variances are computed from the realized X to form fixed in-
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verse–variance weights for the combined estimator. We report bias, standard

deviation, RMSE, and the empirical 95% coverage of the feasible Wald CI for

δ̂int.

We consider m(x) = 2x+ x2 (polynomial; δ = 3) and m(x) = (1− cos(πx))/2

(cosine; δ = 1). The former makes composite midpoint quadrature exact; the

latter has zero endpoint slopes and substantial curvature, stressing boundary

bias and quadrature. In our baseline with B = 10 and h0 = ∆/2, the bias

is small, so differences across DGPs mainly reflect design ( f , σ2) rather than

m(·). The simulation codes can be accessed Here.

The simulation results in Table 1 mirror the large-sample theory with accu-

racy. The integrated estimator delivers coverage rates tightly clustered around

0.94–0.95, precisely in line with the feasible CLT and the variance expression

Var(δ̂int) = Ω2/(Nh2
0). The boundary estimator, as expected, follows a faster

convergence rate, the familiar (Nh0)
−1 rate.

More importantly, the simulations demonstrate the payoff from combin-

ing the two approaches. The inverse–variance weighted estimator consistently

lowers RMSE relative to the boundary method alone. Under uniform designs

the improvements are modest, on the order of two to four percent, but in more

irregular designs, such as the truncated normal case, the gains become substan-

tial, reaching seven to nine percent. This is precisely the scenario highlighted

by the theory: because the two estimators rely on distinct information sets,

boundary levels versus interior slopes, their variances can be efficiently pooled,

and with negligible covariance the combined estimator achieves strictly greater

precision.

The results also highlight robustness to different data-generating processes.

Polynomial and cosine designs yield nearly identical performance at B = 10

and h0 = ∆/2, reflecting that the asymptotic variance depends on the design

distribution and noise rather than the functional form of m(·).6 Together, these

patterns underscore that the integrated and combined estimators not only con-

6Only under deliberately coarse grids does the cosine’s quadrature bias become visible, and
such bias can be eliminated entirely by switching to Simpson’s rule.
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Boundary Integrated Combined

Scenario Bias SD RMSE Bias SD RMSE Cov.95 Bias SD RMSE

Panel A: Polynomial DGP m(x) = 2x + x2

Uniform – Homo −0.001 0.345 0.345 −0.048 1.012 1.012 0.940 −0.005 0.338 0.338
Uniform – Het 0.001 0.404 0.403 −0.084 1.160 1.162 0.954 −0.006 0.388 0.388
Trunc. Normal (sd=0.3) – Homo −0.013 0.608 0.607 0.010 1.021 1.020 0.946 −0.009 0.550 0.550
Trunc. Normal (sd=0.3) – Het 0.014 0.701 0.701 0.022 1.390 1.389 0.942 0.016 0.651 0.650
Uniform – Homo [B=8] 0.009 0.275 0.275 −0.034 0.787 0.787 0.944 0.004 0.266 0.266
Uniform – Homo [B=12] −0.009 0.341 0.341 0.116 1.155 1.160 0.942 0.002 0.336 0.336
Uniform – Homo [n=1000] −0.002 0.475 0.474 −0.023 1.438 1.437 0.948 −0.004 0.467 0.466
Uniform – Homo [n=4000] 0.010 0.221 0.221 −0.044 0.701 0.702 0.952 0.006 0.217 0.217

Panel B: Cosine DGP m(x) = 1−cos(πx)
2

Uniform – Homo 0.000 0.345 0.345 −0.045 1.012 1.012 0.940 −0.004 0.338 0.338
Uniform – Het 0.003 0.404 0.403 −0.081 1.160 1.162 0.954 −0.005 0.388 0.388
Trunc. Normal (sd=0.3) – Homo −0.012 0.608 0.607 0.012 1.021 1.020 0.946 −0.008 0.550 0.550
Trunc. Normal (sd=0.3) – Het 0.016 0.701 0.701 0.025 1.390 1.389 0.942 0.017 0.651 0.650
Uniform – Homo [B=8] 0.011 0.275 0.275 −0.031 0.787 0.787 0.946 0.006 0.266 0.266
Uniform – Homo [B=12] −0.009 0.341 0.341 0.118 1.155 1.160 0.942 0.003 0.336 0.336
Uniform – Homo [n=1000] −0.001 0.475 0.474 −0.021 1.438 1.437 0.948 −0.002 0.467 0.466
Uniform – Homo [n=4000] 0.012 0.221 0.221 −0.042 0.701 0.701 0.952 0.007 0.217 0.217

Notes. Each row reports Monte Carlo results over nsim = 500 replications with N = 2000 as the
default. X designs: Uniform on [0, 1] or truncated normal N (0.5, 0.32) clipped to [0, 1] (“Trunc.
Normal”). Errors are homoskedastic (σ(x) = 1) or heteroskedastic (σ2(x) = 1 + x). We partition
[0, 1] into B equal bins (∆ = 1/B) and set h0 = ∆/2 (κ = 1). The integrated estimator fits local

quadratic regressions of m around midpoints using the triangular kernel K(u) = max{0, 1 − |u|}
to estimate m′(x) and aggregates via midpoint quadrature; its feasible SE uses

Ω̂2 = 2 CK

B

∑
b=1

∆
σ̂2

b

f̂b
, ŜEInt =

√
Ω̂2/(nh2

0).

Here CK =
∫

K∗(u)2 du is the derivative equivalent–kernel constant for local quadratic (computed
numerically); f̂b is a local density estimate (bin counts over 2h0) and σ̂2

b a local residual MSE from
the derivative fit. The boundary estimator is local linear at 0 and 1 with the same base kernel; its

plug–in variance uses the one–sided equivalent–kernel constants

CK,0+ =
∫ ∞

−c
K∗

c (u)
2 du, CK,1− =

∫ c

−∞
K∗

1−c(u)
2 du,

together with local residual MSEs and boundary densities at 0+ and 1−. (In our implementation
we set the offset c = 1 and use the same bandwidth multiple at both boundaries.) The combined
estimator is inverse–variance weighted using design–adaptive asymptotic variances computed
from the realized X. “Bias” is empirical mean minus truth; “SD” is the Monte Carlo standard

deviation; “Cov.95” is empirical 95% coverage of the integrated estimator’s feasible normal CI;

“RMSE” is
√

E[(δ̂ − δ)2].

Table 1: Simulation results: Integrated–Derivative vs Boundary (two DGPs)

form to theory but also deliver practical efficiency gains in finite samples.
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6 Discussions and Conclusions

This paper introduced an integrated–derivative estimator for regression dis-

continuity designs with multiple thresholds. By exploiting interior variation

between cutoffs, the estimator complements conventional boundary estima-

tors, is asymptotically independent from them, and can be combined for ef-

ficiency gains. Our theoretical results establish a central limit theorem and

demonstrate the potential for precision improvements, which are supported

by simulation evidence.

The approach also has limitations. A key assumption is that the condi-

tional expectation function is smooth between thresholds, so that derivative

estimates can be consistently recovered from the interior. In applications where

the running variable may induce unobserved interventions or latent disconti-

nuities between observed cutoffs, this continuity assumption may be restric-

tive. Moreover, while asymptotic independence ensures efficiency gains in

large samples, in finite samples the integrated estimator alone can be noisy,

and gains from combination depend on the design and data availability near

boundaries. Finally, the method focuses on settings with known and ordered

thresholds; extensions to cases with stochastic or endogenous cutoffs remain

open for future research. These caveats highlight that our estimator is best

viewed as a complement to, rather than a replacement for, conventional boundary-

based RD methods.
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Appendix

A Proofs

Lemma 2 (Convergence in Distribution). Under Assumptions 1–6, for each sample

size N, consider the triangular array

{wN,i εi : i = 1, . . . , N},

where wN,i is the effective weight for the outcome of the ith observation Yi when using

local-polynomial first-derivative estimates, with bin width 2h = 2h(N). Define

TN =
N

∑
i=1

wN,i εi, v2
N = Var

(
TN | (X1, . . . , XN)

)
=

N

∑
i=1

w2
N,i σ2(Xi).

Suppose there exists a deterministic sequence αN > 0 such that

α2
N v2

N
p−−−→

N→∞
Ω2 > 0.

Then the Lyapunov condition holds conditionally on {Xi}, i.e.,

lim
N→∞

1
(v2

N)
1+δ/2

N

∑
i=1

E
[
|wN,iεi|2+δ | (X1, . . . , XN)

]
= 0,

and thus, by the triangular-array Lyapunov Central Limit Theorem,

αNTN√
Ω2

d−→ N (0, 1).

Proof. For each bin center cb, the local-polynomial fit for m′(cb) yields weights

for observation i in bin Ib:

wi,b =
1

Nh2 f (cb)
K∗
(

Xi − cb
h

){
1 + Op

(
h +

√
log N

Nh

)}
.
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Since each Xi belongs to exactly one bin Ib(i), the integrated-estimator weight

is

wN,i = 2h wi,b(i) =
2

Nh f (cb(i))
K∗
(Xi − cb(i)

h

){
1 + Op

(
h +

√
log N

Nh

)}
.

Hence, using the boundedness of K∗ and positivity of f (·),

|wN,i| ≤
C1

Nh

(
1 + Op

(
h +

√
log N

Nh

))
, and

N

∑
i=1

w2
N,i = Op

(
1

Nh2

)
.

Conditional on X, the weights {wN,i} are deterministic and the summands

{wN,iεi} are independent with mean zero.

Verification of the Lyapunov condition. By Assumption 6, there exist δ > 0

and C < ∞ such that uniformly in i,

E[|εi|2+δ | Xi] ≤ C.

Thus,
N

∑
i=1

E[|wN,iεi|2+δ | X1, . . . , XN ] ≤ C
N

∑
i=1

|wN,i|2+δ.

Using the bounds above,

N

∑
i=1

|wN,i|2+δ = Op

(
1

N1+δh2+δ

)
.

Since σ2(·) is bounded,

v2
N =

N

∑
i=1

w2
N,i σ2(Xi) = Op

(
1

Nh2

)
,

and hence

(v2
N)

1+δ/2 = Op

(
1

N1+δ/2h2+δ

)
.
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Therefore,
∑N

i=1 |wN,i|2+δ

(v2
N)

1+δ/2
= Op

(
1

Nδ/2

)
p−−−→

N→∞
0.

This verifies the Lyapunov condition. By the triangular-array Lyapunov theo-

rem, conditionally on (X1, . . . , XN),

TN√
v2

N

=
∑N

i=1 wN,iεi√
∑N

i=1 w2
N,iσ

2(Xi)

d−→ N (0, 1).

Given α2
Nv2

N
p−→ Ω2, Slutsky’s lemma yields

αNTN√
Ω2

d−→ N (0, 1).

This completes the proof.

Lemma 3 (Midpoint Rule Approximation Error). Let g ∈ C4([0, 1]). Partition

[0, 1] into B subintervals of length 2h = 1/B, with midpoints cb = (2b − 1)h for

b = 1, . . . , B. Define

E :=
∫ 1

0
g(u) du − 2h

B

∑
b=1

g(cb).

Then

E =
1
3

h3
B

∑
b=1

g′′(cb) + O(h4).

Moreover, as h → 0,

E =
h2

6
[
g′(1)− g′(0)

]
+ O(h4),

so in particular E → 0.

Proof. Partition [0, 1] into B subintervals of width 2h with 2h B = 1. Let ab =

(b − 1) · 2h and cb = ab + h. On [ab, ab + 2h],

∫ ab+2h

ab

g(u) du = 2h g(cb) +
1
3

g′′(cb) h3 +
1

60
g(4)(ηb) h5,
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for some ηb ∈ [ab, ab + 2h]. Summing gives

E =
1
3

h3
B

∑
b=1

g′′(cb) +
1

60
h5

B

∑
b=1

g(4)(ηb).

Since g(4) is continuous (hence bounded) and B = 1/(2h), 1
60 h5 ∑B

b=1 g(4)(ηb) =

O(h4). Thus

E =
1
3

h3
B

∑
b=1

g′′(cb) + O(h4).

By the midpoint Riemann-sum error for g′′ ∈ C2,

2h
B

∑
b=1

g′′(cb) =
∫ 1

0
g′′(u) du + O(h2) = g′(1)− g′(0) + O(h2),

so ∑B
b=1 g′′(cb) =

1
2h [g

′(1)− g′(0)] + O(h). Substituting,

E =
1
3

h3
( 1

2h
[g′(1)− g′(0)] + O(h)

)
+ O(h4) =

h2

6
[g′(1)− g′(0)] + O(h4).

Lemma 4 (Aggregate Bias of Local Polynomial Estimator). Under Assumptions 1–

6, let β̂1(cb) denote the degree-p local-polynomial estimator of m′(cb). Partition [0, 1]

into B subintervals of width 2h = 1/B with midpoints cb = (2b − 1)h, and define

R := 2h
B

∑
b=1

β̂1(cb) − 2h
B

∑
b=1

m′(cb).

Let the aggregate bias be BN(h) := E[R | X]. Then

BN(h) =
2 hp+1

(p + 1)!

(∫ 1

−1
up+1 K∗(u) du

) B

∑
b=1

m(p+1)(cb) + rN(h), (7)

where, with ωm(p+1)(t) := sup|x−y|≤t |m(p+1)(x)− m(p+1)(y)|,

|rN(h)| ≤ C hp
{

ωm(p+1)(h) + h
}

= o(hp) (h → 0).
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Moreover, by continuity of m(p+1),

2h
B

∑
b=1

m(p+1)(cb) →
∫ 1

0
m(p+1)(u) du = m(p)(1)− m(p)(0),

hence

BN(h) =
hp

(p + 1)!

(∫ 1

−1
up+1 K∗(u) du

)[
m(p)(1)− m(p)(0)

]
+ o(hp). (8)

Here K∗(·) is the equivalent kernel defined in Assumption 4.

Proof. Fix an interior midpoint cb ∈ [h, 1 − h]. The standard equivalent-kernel

expansion for local-polynomial derivative estimators (e.g. Fan and Yao, 2005)

yields, conditionally on X,

E
[
β̂1(cb) | X

]
− m′(cb) =

hp

(p + 1)!
m(p+1)(cb)

∫ 1

−1
up+1K∗(u) du + hp ρb(h),

where the remainder satisfies the bound

|ρb(h)| ≤ C
{

ωm(p+1)(h) + h
}

.

(The term ωm(p+1)(h) controls the within-window variation of m(p+1); the +h

term captures smooth design effects via f and is standard under Assump-

tion 2.)

Summing over b = 1, . . . , B and multiplying by 2h,

BN(h) = 2h
B

∑
b=1

(
E[β̂1(cb) | X]−m′(cb)

)
=

2 hp+1

(p + 1)!

(∫
up+1K∗(u) du

) B

∑
b=1

m(p+1)(cb)+ 2h
B

∑
b=1

hpρb(h).

Because 2h ∑B
b=1 1 = 1, the aggregate remainder satisfies

∣∣∣2h
B

∑
b=1

hpρb(h)
∣∣∣ ≤ hp sup

b
|ρb(h)| ≤ C hp{ωm(p+1)(h) + h

}
= o(hp),

which proves (7). Finally, since m(p+1) is continuous on [0, 1], the midpoint
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Riemann sums converge to the integral:

2h
B

∑
b=1

m(p+1)(cb) →
∫ 1

0
m(p+1)(u) du = m(p)(1)− m(p)(0),

and substituting into (7) yields (8).

Lemma 5 (Variance of the Estimator). Under Assumptions 1–6, let β̂1(cb) be the

degree-p local-polynomial estimator of m′(cb). Partition [0, 1] into B subintervals of

width 2h = 1/B, with midpoints cb = (2b − 1) h for b = 1, . . . , B, and define

β̂avg := 2h
B

∑
b=1

β̂1
(
cb
)
.

Then, conditional on the design X,

Var
[
β̂avg

]
=

2
N h2

∫ 1

−1
K∗2(u) du

∫ 1

0

σ2(u)
f (u)

du + o
(

1
N h2

)
.

Proof. Because the kernel has support [−1, 1] and each local fit at cb uses only

observations with |Xi − cb| ≤ h, while bins have width 2h and are disjoint,

the windows [cb − h, cb + h] coincide with bins. Thus, given X, the sets of

observations used to form {β̂1(cb)}B
b=1 are disjoint; with independent errors,

the estimators are independent conditionally on X. Hence

Var
[
β̂avg

]
= Var

(
2h

B

∑
b=1

β̂1(cb)
)
= 4h2

B

∑
b=1

Var
[
β̂1(cb) | X

]
.

For interior points cb ∈ [h, 1 − h], a standard local-polynomial variance ex-

pansion (e.g. Fan and Yao, 2005) gives, uniformly in b,

Var
[
β̂1(cb) | X

]
=

σ2(cb)

N h3 f (cb)

∫ 1

−1
K∗2(u) du + o

(
1

N h3

)
.
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Summing over b and extracting 4h2,

Var
[
β̂avg

]
=

4
N h

(∫ 1

−1
K∗2(u) du

) B

∑
b=1

σ2(cb)

f (cb)
+ o

(
1

N h2

)
,

where the o((Nh2)−1) remainder uses the uniformity and 4h2 · B = 2h.

Let q(u) := σ2(u)/ f (u). By Assumptions 2 and 3, q is continuous on [0, 1].

Therefore its midpoint Riemann sums converge:

2h
B

∑
b=1

q(cb) =
∫ 1

0
q(u) du + o(1),

so
B

∑
b=1

σ2(cb)

f (cb)
=

1
2h

∫ 1

0

σ2(u)
f (u)

du + o
(

1
h

)
.

Substituting back yields

Var
[
β̂avg

]
=

2
N h2

∫ 1

−1
K∗2(u) du

∫ 1

0

σ2(u)
f (u)

du + o
(

1
N h2

)
,

as claimed.
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